Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 9162, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644388

RESUMEN

Cannabis sativa L., previously concealed by prohibition, is now a versatile and promising plant, thanks to recent legalization, opening doors for medical research and industry growth. However, years of prohibition have left the Cannabis research community lagging behind in understanding Cannabis genetics and trait inheritance compared to other major crops. To address this gap, we conducted a comprehensive genome-wide association study (GWAS) of nine key agronomic and morphological traits, using a panel of 176 drug-type Cannabis accessions from the Canadian legal market. Utilizing high-density genotyping-by-sequencing (HD-GBS), we successfully generated dense genotyping data in Cannabis, resulting in a catalog of 800 K genetic variants, of which 282 K common variants were retained for GWAS analysis. Through GWAS analysis, we identified 18 markers significantly associated with agronomic and morphological traits. Several identified markers exert a substantial phenotypic impact, guided us to putative candidate genes that reside in high linkage-disequilibrium (LD) with the markers. These findings lay a solid foundation for an innovative cannabis research, leveraging genetic markers to inform breeding programs aimed at meeting diverse needs in the industry.


Asunto(s)
Cannabis , Estudio de Asociación del Genoma Completo , Fenotipo , Polimorfismo de Nucleótido Simple , Cannabis/genética , Desequilibrio de Ligamiento , Genoma de Planta , Sitios de Carácter Cuantitativo , Marcadores Genéticos , Genotipo
2.
Plants (Basel) ; 12(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37960111

RESUMEN

Cannabis (Cannabis sativa L.) stands as a historically significant and culturally important plant, embodying economic, social, and medicinal relevance for human societies. However, years of prohibition and stigmatization have hindered the cannabis research community, which is hugely undersized and suffers from a scarcity of understanding of cannabis genetics and how key traits are expressed or inherited. In this study, we conducted a comprehensive phenotypic characterization of 176 drug-type cannabis accessions, representative of Canada's legal market. We assessed germination methods, evaluated various traits including agronomic, morphological, and cannabinoid profiles, and uncovered significant variation within this population. Notably, the yield displayed a negative correlation with maturity-related traits but a positive correlation with the fresh biomass. Additionally, the potential THC content showed a positive correlation with maturity-related traits but a negative correlation with the yield. Significant differences were observed between the plants derived from regular female seeds and feminized seeds, as well as between the plants derived from cuttings and seeds for different traits. This study advances our understanding of cannabis cultivation, offering insights into germination practices, agronomic traits, morphological characteristics, and biochemical diversity. These findings establish a foundation for precise breeding and cultivar development, enhancing cannabis's potential in the legal market.

3.
Genome ; 66(8): 202-211, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37163765

RESUMEN

In the 18th century, Carolus Linnaeus created a formalized system of classification of living organisms based on their anatomic relationships, which we know as taxonomic nomenclature. Historically, the genus Cannabis has been described three ways under this system: Cannabis sativa by C. Linnaeus in 1753, Cannabis indica by J.B. Lamarck in 1785, and Cannabis ruderalis by D.E. Janischewsky in 1924, with these taxonomic classifications having been derived from physical, morphological, chemical, and geographical data. Today, this confusing taxonomy has led to an ongoing debate about whether the genus Cannabis consists of a single species or multiple distinct species or subspecies. Recently, genome sequencing and bioinformatics have provided greater resolution of taxonomic assignments at the species level. As a result, some previously discussed classification frameworks have been brought into question. The aim of this review is to provide a historical context for the confusion surrounding the taxonomy of the genus Cannabis and highlight recent research on genomics-based taxonomical approaches to clarify the question of Cannabis taxonomy. We suggest that the latest evidence shifts away from the previous multiple species framework and points towards the genus Cannabis consisting of a highly diverse monotypic species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...